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Objective

Development of an algorithm

e Efficient to solve AC OPF for a large-scale
system

e Seeking for the global optimizer



AC Optimal Power Flow

* Find an optimal solution to meet all the
economic, operational, and engineering
constraints in power system operation

 Computationally complex due to its non-
convexity, nonlinearity, and large-scale

* Needs to be solved in a timely manner

— Weekly in 8hrs, Daily in 2hrs, Hourly in 15mins

— Each 5mins in 1min, Self-healing post-contingency
0.5 mins




Challenges to Efficient Algorithm

Non-convexity: May not be solve reliably and
efficiently

Nonlinearity: High cost of computation in Newton
update per iteration

Large-scale network
— Bus related variables:
Real and imaginary components of voltage

— Generator related variables:
* Real power generation
* Reactive power generation
e Cost variable



Algorithm to Solve AC OPF

Voltage is a phasor = Polar Coordinate System

Power flow equations involve sinusoidal
functions

MATPOWER: Primal-dual interior point method

In an NR update, the evaluation and the
factorization of the Hessian matrix of Lagrangian
need to be performed

— The factorization number for determining 15-minute

dispatches over 30 years is about 11 million for the
same transmission network



Recent Approaches

AC OPF in the Cartesian coordinate system

e AC OPF becomes a nonconvex QCQP with quartet flow constraints
* Non-convexity lies in
— Power balance equality constraints
— Minimum voltage magnitude constraints
 Commonly used technique: Rank relaxation
— Convex optimization
— Easy to solve and yields the global solution
e Zero duality gap under the assumption on the rank
— Many cases observed with rank > 2
= Not a physically meaningful solution
- Lower bound for AC OPF
- Branch-and-bound method for finding the global optimizer



Inputs & Variables of AC OPF

* |Inputs

— @: indefinite matrices with real and reactive power
balance equations

— W: matrices with voltage magnitudes
— [1: matrices associated with [i/? and v
— d: real and reactive power loads
— Upper and lower bounds
* Variables: 3N+ 2N, ~O(Ny)
— v: real and imaginary components of voltage
— p, g: real and reactive power generation
— &: cost variables



Nonconvex AC OPF

Indices

— Bus index, j

— Line index, m

Nonconexity

— @’s are indefinite
matrices

— Minimum voltage
magnitude

* Quartet

— Flow limits are quartet
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Challenges to Efficient Algorithm

* Non-convexity:

May not be solve reliably and efficiently
* Nonlinearity
* Large-scale network



Convexification of AC OPF
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Quadratic Approximation to Flow Limits
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— As the solution converges, the error vanishes
guadratically

— At a solution, two constraints are identical

* Problem becomes convex QCQP



Convex QCQP

At the k" iteration, a convex
QCQP problem is formulated
to approximate AC OPF

* Convex relaxation with
regularization

e Quartet flow limits are
approximated with QC

e As the solution converges,
the error vanishes

e Semi-definite programming
or reformulation-
linearization technique
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Challenges to Efficient Algorithm

* Non-convexity = Sequential convexification

* Nonlinearity: High cost of computation in
Newton update per iteration

e Large-scale network
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Partial Update |

Lagrange relaxation for the trust region method
* |In the Newton update, solve A x, = b,
 Atthe k™" iteration, A, = A, + AA, + A,
— A, is fixed with a given network: no repeated update
or factorization required
— AA, is significantly large enough to affect x,
— OA, is very small

— To recover the exact A, and accordingly x,, the
computational cost is exactly same as the process
with A,

— A, +AA, is a good approximation to A,



Partial Update Il

Idea: If Hessian is not a rapidly varying matrix,

factors are stored for reuse after partial update

A,

Factorization and
factors stored

!

Directly update

factors for NU

Error




Partial Update Il

Factorization of A, where A, = A, + AA, + 6A,
 All A’s are sparse

* A, :sparse factorization performed once and stored for
11 million times reuse

* AA,: determined each iteration, and used to directly
update the factors of A,

* The choice of AA, dictates the efficiency of the partial
update
— Low computation cost to update factors
-y to (A, +4A,) y. = b, is a good approximation to x,

* 0A,: modeled as an error



Total Least Square Problem

The problem is modeled as (A, + 4A,) y, = b,
— 6A,and éb, (= b, — b,) are modeled as error
— TLS problem: [(A,,iu| by) + (6A16b,)] (y,-1) =0

TLS algorithm heavily relies on SVD decomposition
— Singular values and right side eigenvectors

The locations of AA, are known

Low cost for partial update of right side eigenvectors
and eigenvalues

The error between y, and x, is well bound with a good
choice of 6A, and éb,



Challenges to Efficient Algorithm

* Non-convexity 2> Sequential convexification
* Nonlinearity = Partial update via TLS

* Large-scale network
— Bus related variables:

Real and imaginary components of voltage

— Generator related variables:
* Real power generation
* Reactive power generation
e Cost variable



Plan for Finding the Global Solution

* Global solution using trust region method with
primal-dual interior point method

— Stopping criterion for global solution (Sorensen)

— Starting point independence

 BARON software package for comparison

— Widely used and efficient global optimization
solver for operation engineering problems

— Branch-and-bound method



Challenges to Efficient Algorithm

* Non-convexity =2 Iterative convexification
* Nonlinearity = Partial update via TLS

* Large-scale network
— Bus related variables:

Real and imaginary components of voltage

— Generator related variables:
* Real power generation
* Reactive power generation
e Cost variable



Variable for Representing Voltages

Key observations:

* Voltages at some buses vary in a consistent way

s 0=[0,0,;,-0,0,],0,"=0, ®,"=-0,

 Rank of @ is always 4 regardless of a system

At the it" bus, define

* a;(4x1) as ¢,/vwhere ¢. is the eigenvectors of @
corresponding to nonzero eigenvalues

* a?(2Ng-4x1) as (¢°)'vwhere ¢? is the eigenvectors
with zero eigenvalues spanning the null space of @

2 (a,; a°) = (¢, ¢°) v

* Voltage vis reconstructed: v =g¢.a; + ¢.la?
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Subspace Problems

ldea

Power balance equations
at Bus jyields p; = p(a,),
q;=q{a,)if ¢,is notin
the null space of @,

All the variables 2 «

Make local decisions on
multiple subspaces

Adjust the results globally

Sparsity needs to be
preserved in each sub-
problem

Negative eigenvector space:

Projection of voltage onto .
J 5 Basis vectors are ¢,_ and ¢,

the negative eigenvector

’ 062 ¢2 \\Voltage vector
§rp- -

Positive eigenvector space:

Basis vectors are ¢,, and ¢;,

Projection of voltage onto
the positive eigenvector
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Parallel Algorithm

Reformulate AC OPF problem with a, and a,° by
dropping voltage and generator variables

Fix the values for a ° with respect to v, ,
Number of variables in the subspace problem:
4 <<3N;+2Ng ~9(Ny)

Computation of sub optimization problem

— Low cost to solve a small problem
— Can utilize parallel computation

Central adjustment of a’s



Subspace Problem

/
Branch-and-bound AC OPF sub-problem Convexified sub-problem
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Number of Sub-problems

/

* Number of possible a: N,
— Each bus, @# and @7 share null space
— @, is uniquely defined — only one set of o

* BusJ: directly connected with neither PV nor the reference buses
— &, lies the null space of @ and @7 if a generator is located at j
— a;: not appear in the power balance, isolated with p, g, and §
—> Jis not a suitable choice for the subspace problem
= Exclude such subspaces

* Number of the proper choice for the subspace = tN_
— w (= N,/N,) is a good estimator for : WECC ~ 2.5, EI ~ 3.5
— Ttis approximately constant for various IEEE model systems ~ 2

Ng 9 14 30 118 300 2746

N¢ 3 5 6 54 69 520
N, 6 9 16 91 143 983

25



Central Adjust of Local Solutions

TNG 2

min )

2
k-1 Hz
Vi 5Pk »9k .]=1

aj _ (¢]P )T Vi

+)LHvk -V
* Ais the smallest nonzero eigenvalue of 2, ¢>jP(¢jP)T
e Tisthe number of buses that are:

PV or ref bus, OR, directly connected with them

* Unconstrained quadratic programming
— ¢f are all known and unchanged
— v, =V = E(D+AE(Z pPa + Av )
where 2, ¢(¢pF)" = EDE'
— Heuristic approach: v, =v, , + V.V’



Challenges to Efficient Algorithm

* Non-convexity = Sequential convexification
* Nonlinearity = Partial update via TLS

* Large-scale network = Sequential subspace
optimization with parallelization
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Plan for an Efficient Algorithm

* Parallel computation
— Building a supercomputer

— Developing a parallel algorithm to fully utilize
multiple core processors

* Each core solves a small optimization problem
— Number of variable is constant
— Number of subspace problem increases in 3(N)
— Tests on large-scale systems



References

/

D. Sorensen, “Newton’s Method with a Model Trust Region Modification”, SIAM J. Numerical
Analysis, vol. 19, no. 2, Apr. 1982, pp. 409-426

e Z.Luo, W.Ma, A.So, Y. Ye, and S. Zhang, “Semidefinite Relaxation of Quadratic Optimization
Problems”, IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20-34, May, 2010

 B. Lesieutre, D. Molzahn, A. Borden, and C. DeMarco, “Examining the Limits of the
Application of Semidefinite Programming to Power Flow Problems”, 49th Annual Allerton
Conference on Communication, Control, and Computing, pp. 1492-1499, Sept. 2011

 J.Lavaei andS. H. Low, “Zero Duality Gap in Optimal Power Flow Problem”, IEEE T. on Power
Syst., vol. 27, no. 1, pp. 92-107, 2012

* A. Gopalakrishnan, A. Raghunathan, D. Nikovski, and L. Biegler, “Global Optimization of

Optimal Power Flow Using a Branch & Bound Algorithm”, Allerton Conf. Comm. Cont., and
Comp., October 2012

« M. Cain, R. O’Neill, and A. Castillo, “History of Optimal Power Flow and Formulations”, Dec.
2012, [Online], Available at
http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-1-
history-formulation-testing.pdf

* G. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins University Press; 4t Ed.,
Dec., 2012

29



